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We consider Brownian motion in a circular disk �, whose boundary ∂� is reflecting,
except for a small arc, ∂�a , which is absorbing. As ε = |∂�a |/|∂�| decreases to zero
the mean time to absorption in ∂�a , denoted Eτ , becomes infinite. The narrow escape
problem is to find an asymptotic expansion of Eτ for ε � 1. We find the first two
terms in the expansion and an estimate of the error. The results are extended in a
straightforward manner to planar domains and two-dimensional Riemannian manifolds
that can be mapped conformally onto the disk. Our results improve the previously

derived expansion for a general domain, Eτ = |�|
Dπ

[
log 1

ε
+ O(1)

]
, (D is the diffusion

coefficient) in the case of a circular disk. We find that the mean first passage time from

the center of the disk is E[τ | x(0) = 0] = R2

D

[
log 1

ε
+ log 2 + 1

4 + O(ε)
]
. The second

term in the expansion is needed in real life applications, such as trafficking of receptors
on neuronal spines, because log 1

ε
is not necessarily large, even when ε is small. We

also find the singular behavior of the probability flux profile into ∂�a at the endpoints
of ∂�a , and find the value of the flux near the center of the window.

KEY WORDS: Planar Brownian motion; Exit problem; Singular perturbations.

1. INTRODUCTION

The expected lifetime of a Brownian motion in a bounded domain, whose boundary
is reflecting, except for a small absorbing portion, increases indefinitely as the
absorbing part shrinks to zero. The narrow escape problem is to find an asymptotic
expansion of the expected lifetime of the Brownian motion in this limit. The narrow
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escape problem in three dimensions has been studied in the first paper of this
series,(1) where it was converted to a mixed Dirichlet-Neumann boundary value
problem for the Poisson equation in the domain. This is a well known problem
of classical electrostatics (e.g., the electrified disk problem(2)), elasticity (punch
problems), diffusion and conductance theory, hydrodynamics, and acoustics.(3−7)

It dates back to Helmholtz(8) and Lord Rayleigh(9) and has been extensively studied
in the literature for special geometries.

The study of the two-dimensional narrow escape problem began in Ref. 10 in
the context of receptor trafficking on biological membranes,(11) where a leading or-
der expansion of the expected lifetime was constructed for a general smooth planar
domain. In this paper we present a thorough analysis of the narrow escape problem
for the circular disk and note that our calculations apply in a straightforward man-
ner to any simply connected domain in the plane that can be mapped conformally
onto the disk. According to Riemann’s mapping theorem,(12) this covers all simply
connected planar domains whose boundary contains at least one point. The same
conclusion holds for the narrow escape problem on two-dimensional Riemannian
manifolds that are conformally equivalent to a circular disk. The biological
problem of receptor trafficking on membranes is locally planar, but globally it is
a problem on a Riemannian manifold. The narrow escape problem of non-smooth
domains that contain corners or cusp points at their boundary is treated in the
third part of this series,(13) where the conformal mapping method is demonstrated.

The specific mathematical problem can be formulated as follows. A Brownian
particle diffuses freely in a disk �, whose boundary ∂� is reflecting, except for
a small absorbing arc ∂�a . The ratio between the arclength of the absorbing
boundary and the arclength of the entire boundary is a small parameter

ε = |∂�a|
|∂�| � 1.

The mean first passage time to ∂�a , denoted Eτ , becomes infinite as ε → 0. The
asymptotic expansion of Eτ for ε � 1 was considered for the particular case when
∂�a is a disjoint component of ∂� in [Ref. 14 and references therein]. This case
differs from the case at hand in that the absorption probability flux density in the
former is regular, while in the latter it is singular. It was shown in Ref. 10 that Eτ for
the narrow escape problem in a general planar domain � has the asymptotic form

Eτ = |�|
Dπ

[
log

1

ε
+ O(1)

]
, (1.1)

where |�| is the area of �, and D is the diffusion coefficient. The leading order
approximation (1.1) has the drawback that log ε can be O(1) when ε � 1. Thus
the second term in the expansion is needed. For the particular case of a circular
disk an approximate value for the correction was given in Ref. 10. In contrast,
the asymptotics of Eτ for a three dimensional ball of radius R with an absorbing
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window of radius εR is(1)

Eτ = |�|
4DεR

[1 + O(ε log ε)] ,

so the leading order term is much larger than the correction term if ε is small. The
difference in the asymptotic form of Eτ stems from the different singularities
of the Neumann function in two and three dimensions: it is logarithmic in two
dimensions and has a pole in three dimensions.

Our computations are based on the mixed boundary value techniques of
Ref. 3. They reveal the singularity of the absorption flux in the absorbing arc
∂�a . Specifically, the singularity is (ε2 − s2)−1/2, where s is the (dimensionless)
arclength measured from the center of ∂�a , and attains the values s = ±ε at the
endpoints.

The exit time vanishes at the absorbing boundary, and is small near the
absorbing boundary, but it attains large and almost constant values of order log 1

ε

inside the domain. We show that this “jump” occurs in a small boundary layer
of size O

(
ε log 1

ε

)
. We calculate the average exit time, where the averaging is

against a uniform initial distribution in the disk, the time to exit from the center,
and the maximum mean exit time, attained at the antipodal point to the center of
the absorbing window.

The mean first passage time (MFPT) from the center of the disk is

E[τ | x(0) = 0] = R2

D

[
log

1

ε
+ log 2 + 1

4
+ O(ε)

]
, (1.2)

the MFPT, averaged with respect to an initial uniform distribution in the disk is

Eτ = R2

D

[
log

1

ε
+ log 2 + 1

8
+ O(ε)

]
, (1.3)

and the maximal value of the MFPT is attained on the circumference, at the
antipodal point to the center of the hole,

max
x∈�

E[τ | x] = E[τ | r = 1, θ = 0] = R2

D

[
log

1

ε
+ 2 log 2 + O(ε)

]
. (1.4)

The boundary layer analysis of Eτ can be applied to the approximation of the
first eigenfunction and eigenvalue of the mixed Neumann-Dirichlet boundary value
problem with a small Dirichlet window on the boundary. This problem arises in the
construction of the first eigenfunction and eigenvalue of the Neumann problem in
a domain that consists of two domains (e.g., circular disks) connected by a narrow
channel.(15,16)

Since the first eigenvalue λ1 of the mixed boundary value problem is much
smaller than all other eigenvalues, the probability density function (pdf) of the
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Brownian particle in the domain is given, for sufficiently long times, by

p(x, t | x(0) = y) ∼ φ1(x)φ1( y) e−λ1t , (1.5)

where φ1(x) is the first eigenfunction. Integrating with respect to x and t , we
obtain

E[τ | y] ∼ φ1( y)

λ1
.

It follows that the spatial structures of the MFPT, the first eigenfunction, and the
quasi steady state pdf (1.5) are the same, up to multiplicative factors. It follows
that all have the same boundary layers near the small window. The width of the
boundary layer in 3D is O(a), where a is the radius of the window (see Ref. 1)
and is independent of the volume, and in 2D it is O(a log ε), as shown below. The
derivation of the 3D result is the same as that in 2D.

2. SOLUTION OF A MIXED BOUNDARY VALUE PROBLEM

In non-dimensional variables the narrow escape problem concerns Brownian
motion inside the unit disk, whose boundary is reflecting but for a small absorbing
arc of length 2ε (see Fig. 1). In polar coordinates x = (r, θ ) the MFPT

v(r, θ ) = E[τ | x(0) = (r, θ )],

Fig. 1. A circular disk of radius R. The arclength of the absorbing boundary (dashed line) is 2εR. The
solid line indicates the reflecting boundary.
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is the solution to the mixed Neumann-Dirichlet inhomogeneous boundary value
problem (see, e.g. Ref. 17)

	v(r, θ ) = −1, r < 1, for 0 ≤ θ < 2π,

v(r, θ )

∣∣∣∣
r=1

= 0, for |θ − π | < ε, (2.1)

∂v(r, θ )

∂r

∣∣∣∣
r=1

= 0, for |θ − π | > ε,

which is reduced by the substitution

u = v − 1 − r2

4
(2.2)

to the mixed Neumann-Dirichlet problem for the Laplace equation

	u(r, θ ) = 0, for r < 1, 0 ≤ θ < 2π,

u(r, θ )

∣∣∣∣
r=1

= 0, for |θ − π | < ε, (2.3)

∂u(r, θ )

∂r

∣∣∣∣
r=1

= 1

2
, for |θ − π | > ε.

We adapt the method of Ref. 3 to the solution of (2.3). Separation of variables
suggests that

u(r, θ ) = a0

2
+

∞∑
n=1

anrn cos nθ, (2.4)

where the coefficients {an} are to be determined by the boundary conditions

u(r, θ )

∣∣∣∣
r=1

= a0

2
+

∞∑
n=1

an cos nθ = 0, for π − ε < θ ≤ π, (2.5)

∂u(r, θ )

∂r

∣∣∣∣
r=1

=
∞∑

n=1

nan cos nθ = 1

2
, for 0 ≤ θ < π − ε. (2.6)

We identify this problem with problem (5.4.4) in Ref. 3, where general functions
appear on the right hand sides of equations (2.5) (2.6). Due to the invertibility of
Abel’s integral operator, the equation

a0

2
+

∞∑
n=1

an cos nθ = cos
1

2
θ

∫ π−ε

θ

h1(t) dt√
cos θ − cos t

, (2.7)
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defines h1(t) uniquely for 0 ≤ t < π − ε. The coefficients are given by

an = 2

π

∫ π−ε

0
cos nθ cos

1

2
θ dθ

∫ π−ε

θ

h1(t) dt√
cos θ − cos t

= 1

π

∫ π−ε

0
h1(t) dt

∫ t

0

cos
(
n + 1

2

)
θ + cos

(
n − 1

2

)
θ√

cos θ − cos t
dθ. (2.8)

The integral

Pn(cos u) =
√

2

π

∫ u

0

cos
(
n + 1

2

)
θ√

cos θ − cos u
dθ, (2.9)

is Mehler’s integral representation of the Legendre polynomial.(19) It follows that

an = 1√
2

∫ π−ε

0
h1(t)[Pn(cos t) + Pn−1(cos t)] dt, (2.10)

for n > 0, and

a0 = 2

π

∫ π−ε

0
h1(t) dt

∫ t

0

cos 1
2θ√

cos θ − cos t
dθ =

√
2
∫ π−ε

0
h1(t) dt. (2.11)

Integration of (2.6) gives

∞∑
n=1

an sin nθ = 1

2
θ, for 0 ≤ θ < π − ε. (2.12)

Changing the order of summation and integration yields∫ π−ε

0
h1(t)

1√
2

∞∑
n=1

[Pn(cos t) + Pn−1(cos t)] sin nθ dt = 1

2
θ. (2.13)

Using [Ref. 3, Eq.(2.6.31)],

1√
2

∞∑
n=1

[Pn(cos t) + Pn−1(cos t)] sin nθ = cos 1
2θ H (θ − t)√

cos t − cos θ
, (2.14)

we obtain ∫ θ

0

h1(t) dt√
cos t − cos θ

= θ

2 cos 1
2θ

, for 0 ≤ θ < π − ε. (2.15)

The solution of the Abel-type integral equation (2.15) is given by

h1(t) = 1

π

d

dt

∫ t

0

u sin
u

2√
cos u − cos t

du. (2.16)
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Together with (2.11) this gives

a0 =
√

2

π

∫ π−ε

0

u sin
u

2√
cos u + cos ε

du. (2.17)

We expect the function u(r, θ ), closely related to the MFPT, to be almost
constant in the disk, except for a boundary layer near the absorbing arc. The value
of this constant is a0, because all other terms of expansion (2.4) are oscillatory.

2.1. Small ε Asymptotics

The results of the previous section are independent of the value of ε. Here
we find the asymptotic of a0 for ε � 1. Substituting

s =
√

cos u + cos ε

2
(2.18)

in the integral (2.17) yields

a0 = 4

π

∫ cos(ε/2)

0

arccos

√
s2 + sin2

ε

2√
s2 + sin2

ε

2

ds

= 2
∫ cos(ε/2)

0

1√
s2 + sin2 ε

2

ds − 4

π

∫ cos(ε/2)

0

arcsin

√
s2 + sin2

ε

2√
s2 + sin2

ε

2

ds

= 2 log
(

1 + cos
ε

2

)
− 2 log sin

ε

2
− 4

π

∫ cos(ε/2)

0

arcsin

√
s2 + sin2

ε

2√
s2 + sin2

ε

2

ds

= −2 log
ε

2
+ 2 log 2 − 4

π

∫ 1

0

arcsin s

s
ds + O(ε)

= −2 log
ε

2
+ O(ε), (2.19)

because
∫ 1

0
arcsin s

s ds = π
2 log 2. The substitution (2.18) turns out to be extremely

useful in evaluating the integrals appearing here.
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2.2. Expected Lifetime

Now, that we have the asymptotic expansion of a0 (Eq.(2.19)), the evaluation
of the expected lifetime (MFPT to the absorbing boundary ∂�a) becomes possible.
Setting r = 0 in Eqns. (2.2) and (2.4), we obtain the expression (1.2) for the MFPT
from the center of the disk.

Averaging (2.3) with respect to a uniform initial distribution in � gives

Eτ = 1

π

∫ 2π

0
dθ

∫ 1

0
v(r, θ )r dr =

∫ 1

0

[(
a0 + 1

2

)
r − r3

2

]
dr

= a0

2
+ 1

8
= − log

ε

2
+ 1

8
, (2.20)

as asserted in Eq.(1.3).
The maximal value of the MFPT is attained at the point r = 1, θ = 0, which

is antipodal to the center of the absorbing arc. At this point ∂u
∂θ

= 0, as can be seen
by differentiating expansion (2.4) term by term. Setting r = 1 and θ = 0, we find
that

vmax = u(1, 0) = a0

2
+

∞∑
n=1

an. (2.21)

The evaluation of the maximal exit time is not as straightforward as the previous
evaluated MFPTs, because one needs to calculate the infinite sum in (2.21). This
calculation is done in Appendix A, where we find (Eq.(A.12))

vmax = log
1

ε
+ 2 log 2 + O(ε),

as asserted in Eq. (1.4).

2.3. Boundary Layers

We see that the maximal exit time is only vmax − vcenter = log 2 − 1
4 =

.4431471806 . . . longer than its value at the center of the disk. In other words, the
variance along the radius θ = 0, 0 ≤ r ≤ 1 is very small. However, in the opposite
direction θ = π, 0 ≤ r ≤ 1, we expect a much different behavior. In particular,
the MFPT is decreasing from a value of vcenter ≈ log 1

ε
at the center of the disk to

v(1, π ) = 0 at the center of ∂�a . The calculation of the exit time

vray(r ) ≡ v(r, θ = π ) = 1 − r2

4
+ a0

2
+

∞∑
n=1

an(−r )n, (2.22)
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is similar to that of the maximal exit time and is done in Appendix B. For ε � 1
and 1 − r � √

ε, we find the asymptotic form (Eq.(B.8))

vray(r ) = − log
ε

2
+ 2 log(1 − r ) + 1 − r2

4
− log(1 + r2) + q(r ) + O(ε),

(2.23)
where q(r ) is a smooth function in the interval [0, 1] (Eqs.(B.6)-(B.7)). Clearly,
this asymptotic expansion does not hold all the way through to the absorbing
arc at r = 1, where the boundary condition requires vray(r = 1) = 0. Instead, the
boundary condition is almost satisfied at r = 1 −√

ε
2

vray

(
1 −

√
ε

2

)
= − log

ε

2
+ 2 log

(√
ε

2

)
+ O(ε) = O(ε), (2.24)

In other words, the asymptotic series (2.23) is the outer expansion.(18)

We proceed to construct the boundary layer for 1 − r � √
ε. Setting δ =

1 − r , we have the identities

1 − r2

4
= 1

2
δ − 1

4
δ2,

1 − 2r cos ε + r2 = 4 sin2 ε

2
(1 − δ) + δ2.

The exact form of the MFPT along the ray, Eq.(B.3), gives the expansion

vray(δ) = δ

2
+ a0δ

4 sin
ε

2

(2.25)

− δ

π sin
ε

2

∫ cos(ε/2)

0

arccos

√
s2 + sin2

ε

2
s2 ds

(
s2 + sin2

ε

2

)3/2
+ O

(
δ2

ε

)
.

Evaluating the integral in Eq.(2.25),

∫ cos(ε/2)

0

arccos

√
s2 + sin2

ε

2
s2 ds

(
s2 + sin2

ε

2

)3/2

= −π

2

[
log sin

ε

2
+ cos

ε

2
− log

(
1 + cos

ε

2

)
+ log 2

]
+ O(ε), (2.26)

we obtain the boundary layer structure

vray(δ) = δ

ε
+ O

(
δ,

δ2

ε

)
. (2.27)
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In particular, setting δ0 = −ε log ε
2 yields

vray(δ0) = − log
ε

2
+ O(ε log2 ε), (2.28)

which is the value of the outer solution. We conclude that the width of the boundary
layer is O

(
ε log 1

ε

)
. Furthermore, the flux at the center of the hole is given by

fluxcenter = ∂vray

∂r

∣∣∣∣
r=1

= −∂vray

∂δ

∣∣∣∣
δ=0

= −1

ε
+ O(1). (2.29)

2.4. Flux Profile

Next, we calculate the profile of the flux on the absorbing arc. Differentiating
expansion (2.4) gives the flux as

f (θ ) = ∂v(r, θ )

∂r

∣∣∣∣
r=1

= ∂u(r, θ )

∂r

∣∣∣∣
r=1

− 1

2
= −1

2
+

∞∑
n=1

nan cos nθ, (2.30)

for π − ε < θ ≤ π . Using Eq. (2.10) for the coefficients, we have

f (θ ) = −1

2
+ 1√

2

∫ π−ε

0
h1(t) dt

∞∑
n=1

n[Pn(cos t) + Pn−1(cos t)] cos nθ

= −1

2
+ 1√

2

d

dθ

∫ π−ε

0
h1(t) dt

∞∑
n=1

[Pn(cos t) + Pn−1(cos t)] sin nθ.

Since θ > π − ε > t , Eq. (2.14) implies

f (θ ) = −1

2
+ d

dθ

(
cos

θ

2

∫ π−ε

0

h1(t) dt√
cos t − cos θ

)
. (2.31)

The evaluation of this integral is not immediate and is given in Appendix C. We
find that (Eq.(C.17))

f (α) = − α2

ε
√

1 − α2
− 1

ε

∞∑
n=0

((
2n+1(n + 1)!

)2

(2n + 2)!
α2 − (2nn!)2

(2n + 1)!

)
(1 − α2)n+1/2

− π

2ε

∞∑
n=0

(
(2n)!

(2nn!)2
− (2n + 2)!(2n + 2)

(2n+1(n + 1)!)2
α2

)
(1 − α2)n + O(1), (2.32)

where α = π−θ
ε

, |α| < 1. The flux has a singular part, represented by the half-
integer powers of (1 − α2), and a remaining regular part (the integer powers.)
The first term, − α2

ε
√

1−α2
, is the most singular one, because it becomes infinite

as |α| → 1. In other words, the flux is infinitely large near the boundary of the
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hole. The splitting of the solution into singular and regular parts is common in
the theory of elliptic boundary value problems in domains with corners (see e.g.,
Refs. 20–22).

The value of the flux at the center of the hole is to leading order

f (0) = −1

ε

∞∑
n=0

(
π

2

(2n)!

(2nn!)2
− (2nn!)2

(2n + 1)!

)
= −1

ε
, (2.33)

in agreement with (2.29) (see Ref. 23, p. 711, (5.2.13.1), p.714 (5.2.14.2) or
evaluate the sum with MAPLE).

The size of the boundary layer varies with θ proportionally to 1/ f (θ ). The
singularity at the end points of the hole indicates that the layer shrinks there to zero.
Therefore, the boundary layer is shaped as a small cap bounded by the absorbing
arc and (more or less) the curve

√
1 − α2 (see Fig. 2). In particular, the MFPT

on the reflecting boundary is O
(
log 1

ε

)
, even when taken arbitrarily close to the

absorbing boundary. The singularity of the flux near the endpoints indicates that
the diffusive particle prefers to exit near the endpoints rather than through the
center of the hole.

The expansion (C.17) is useful in approximating the flux near the endpoints
(α = ±1), where few terms are needed. However, it is slowly converging near the

Fig. 2. The boundary layer, indicated by “BL,” is the area bounded by the absorbing boundary (dashed

line) and the solid arc. Outside the boundary layer the MFPT is O
(

log 1
ε

)
.
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center of the hole, where a power series in α2 should be used instead

f (α) =
∞∑

n=0

fnα
2n + O(1), (2.34)

where the coefficients fn are O(ε−1). Eqs. (2.33) and (2.29) indicate that f0 = − 1
ε
.

All other coefficients can be found in a similar fashion. We conclude that near the
center (α � 1) we have

f (α) = −1

ε
+ O

(
1,

α2

ε

)
. (2.35)

APPENDIX A: MAXIMAL EXIT TIME FOR THE CIRCULAR DISK

Using Eq. (2.10) we find

vmax = u(1, 0) = a0

2
+

∞∑
n=1

an (A.1)

= a0

2
+ 1√

2

∫ π−ε

0
h1(t)

∞∑
n=1

[Pn(cos t) + Pn−1(cos t)] dt.

Recall the generating function of the Legendre polynomials [19]

1√
1 − 2t x + t2

=
∞∑

n=0

Pn(x)tn, (A.2)

from which it follows that
∞∑

n=0

Pn(cos t) = 1√
1 − 2 cos t + 1

= 1

2 sin
t

2

. (A.3)

Together with Eq. (2.11), this gives

vmax = a0

2
+ 1√

2

∫ π−ε

0
h1(t)

(
1

sin t
2

− 1

)
dt = 1√

2

∫ π−ε

0

h1(t) dt

sin
t

2

. (A.4)

Combining with Eq. (2.16) and integrating by parts, we get

vmax = 1√
2

∫ π−ε

0

1

π

1

sin
t

2

d

dt

∫ t

0

u sin
u

2
du

√
cos u − cos t

dt (A.5)
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= 1
√

2π sin
t

2

∫ t

0

u sin
u

2
du

√
cos u − cos t

∣∣∣∣
π−ε

0

+ 1

2
√

2π

∫ π−ε

0

cos
t

2

sin2
t

2

dt

∫ t

0

u sin
u

2
du

√
cos u − cos t

.

Equations (2.17) and (2.19) show that

√
2

π

∫ t

0

u sin
u

2
du

√
cos u − cos t

= −2 log cos
t

2
+ 2 log

(
1 + sin

t

2

)
+ k(t), (A.6)

where

k(t) = − 4

π

∫ sin
t

2
0


arcsin

√
s2 + cos2 t

2√
s2 + cos2

t

2


 ds. (A.7)

Therefore,

lim
t→0

√
2

π sin
t

2

∫ t

0

u sin
u

2
du

√
cos u − cos t

= lim
t→0

−2 log cos
t

2
+ 2 log

(
1 + sin

t

2

)
+ k(t)

sin
t

2

= 2 − 4

π
arcsin(1) = 0. (A.8)

Hence

vmax = 1

2 cos
ε

2


2 log

(
1 + cos

ε

2

)
− 2 log sin

ε

2
− 4

π

∫ cos
ε

2
0

×




arcsin

√
s2 + sin2

ε

2√
s2 + sin2

ε

2


 ds


+ 1

2
√

2π

∫ π−ε

0

×
cos

t

2

sin2
t

2

dt

∫ t

0

u sin
u

2
du

√
cos u − cos t

.
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For ε � 1

vmax = − log
ε

2
+ 1

2
√

2π

∫ π

0

cos
t

2

sin2
t

2

dt

∫ t

0

u sin
u

2
du

√
cos u − cos t

+ O(ε). (A.9)

Changing the order of integration, we get

vmax = − log
ε

2
+ 1

2
√

2π

∫ π

0
u sin

u

2
du

∫ π

u

cos
t

2
dt

sin2
t

2

√
cos u − cos t

+ O(ε).

(A.10)
Substituting

s =
√

cos u − cos t

2
(A.11)

in the inner integral results in

∫ π

u

cos
t

2
dt

sin2
t

2

√
cos u − cos t

=
√

2
cos

u

2

sin2
u

2

.

Therefore,

vmax = − log
ε

2
+ 1

2π

∫ π

0

u

tan
u

2

du = − log
ε

2
− 2

π

∫ π/2

0
log sin v dv

= − log
ε

2
+ log 2. (A.12)

APPENDIX B: EXIT TIMES ALONG THE RAY

Along the ray θ = π the MFPT is given by

vray(r ) ≡ v(r, θ = π ) = 1 − r2

4
+ a0

2
+

∞∑
n=1

an(−r )n

= 1 − r2

4
+ a0

2
+ 1√

2

∫ π−ε

0
h1(t)

∞∑
n=1

[Pn(cos t) + Pn−1(cos t)](−r )n dt.
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Using the generating function (A.2) of the Legendre polynomials to sum the
infinite series, we obtain

vray(r ) = 1 − r2

4
+ 1 − r√

2

∫ π−ε

0

h1(t) dt√
1 + 2r cos t + r2

. (B.1)

Combining with equation (2.16), integrating by parts, and changing the order of
integration gives

vray(r ) = 1 − r2

4
+ 1 − r

2
√

1 − 2r cos ε + r2
a0

−r (1 − r )√
2π

∫ π−ε

0
u sin

u

2
du

∫ π−ε

u

sin t dt

(1 + 2r cos t + r2)3/2
√

cos u − cos t
.

The substitutions s = √
cos u − cos t and x = √

2r s lead to

∫ π−ε

u

sin t dt

(1 + 2r cos t + r2)3/2
√

cos u − cos t

= 2
√

cos u + cos ε

(1 + 2r cos u + r2)
√

1 − 2r cos ε + r2
,

which implies that

vray(r ) = 1 − r2

4
+ 1 − r

2
√

1 − 2r cos ε + r2
a0 (B.2)

−
√

2 r (1 − r )

π
√

1 − 2r cos ε + r2

∫ π−ε

0
u sin

u

2

√
cos u + cos ε

1 + 2r cos u + r2
du.

The substitution (2.18) gives

∫ π−ε

0
u sin

u

2

√
cos u + cos ε

1 + 2r cos u + r2
du

= 4
√

2
∫ cos

ε

2
0

arccos

√
s2 + sin2

ε

2
s2 ds

(1 − 2r cos ε + r2 + 4rs2)

√
sin2

ε

2
+ s2

,
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and we obtain the exact form of vray(r ) as

vray(r ) = 1 − r2

4
+ 1 − r

2
√

1 − 2r cos ε + r2
a0 (B.3)

− 8r (1 − r )

π
√

1 − 2r cos ε + r2

∫ cos
ε

2
0

arccos

√
s2 + sin2

ε

2
s2 ds

(1 − 2r cos ε + r2 + 4rs2)

√
sin2

ε

2
+ s2

.

For ε � 1 and 1 − r � √
ε Eq. (B.3) becomes

vray(r ) = 1 − r2

4
− log

ε

2
− 8r

π

∫ 1

0

s arccos s ds

(1 − r )2 + 4rs2
+ O(ε). (B.4)

To evaluate the integral in (B.4), we write

arccos s = π

2
− arcsin s, (B.5)

and obtain

8r

π

π

2

∫ 1

0

s ds

(1 − r )2 + 4rs2
= −2 log(1 − r ) + log(1 + r2).

The function q(r ), defined by

q(r ) = 8r

π

∫ 1

0

arcsin s s ds

(1 − r )2 + 4rs2
(B.6)

in the interval 0 ≤ r ≤ 1, has the endpoint values

q(0) = 0, q(1) = log 2. (B.7)

Therefore,

vray(r ) = − log
ε

2
+ 2 log(1 − r ) + 1 − r2

4
− log(1 + r2) + q(r ) + O(ε), (B.8)

is the MFPT for ε � 1 and 1 − r � √
ε. In particular,

vcenter = vray(0) = − log
ε

2
+ 1

4
+ O(ε),

as asserted in (1.2).
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APPENDIX C: FLUX PROFILE

In this appendix we calculate the flux profile given by Eq. (2.31). Substituting
Eq. (2.16) for h1 in eq. (2.31) gives

f (θ ) = −1

2
+ d

dθ


cos

θ

2

∫ π−ε

0

1

π

d

dt

∫ t

0

u sin
u

2
du

√
cos u − cos t√

cos t − cos θ
dt


 .

Integration by parts and changing the order of integration, we find that

f (θ ) = −1

2
+ 1

π

d

dθ

[
cos

θ

2√
cos(π − ε) − cos θ

∫ π−ε

0

u sin
u

2
du

√
cos u + cos ε

−1

2
cos

θ

2

∫ π−ε

0
u sin

u

2
du

∫ π−ε

u

sin t dt

(cos t − cos θ )3/2(cos u − cos t)1/2

]
.

We evaluate the inner integral by making the substitution x = √
cos u − cos t ,∫ π−ε

u

sin t dt

(cos t − cos θ )3/2(cos u − cos t)1/2
= 2

√
cos u + cos ε

(cos u − cos θ )
√− cos θ − cos ε

.

Therefore

f (θ ) = −1

2
+ 1

π

d

dθ

[
cos

θ

2√− cos ε − cos θ

∫ π−ε

0

u sin
u

2
du

√
cos u + cos ε

−
cos

θ

2√− cos θ − cos ε

∫ π−ε

0

u sin
u

2

√
cos u + cos ε

cos u − cos θ
du

]

= −1

2
+ 1

π

d

dθ


 cos

θ

2√− cos ε − cos θ

π√
2

a0−

cos
θ

2√− cos θ − cos ε

∫ π−ε

0

u sin
u

2

√
cos u + cos ε

cos u − cos θ
du


 .
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The substitution (2.18) gives

∫ π−ε

0

u sin
u

2

√
cos u + cos ε du

cos u − cos θ

= 2
√

2
∫ cos

ε

2
0

arccos

√
s2 + sin2

ε

2
s2 ds(

s2 + sin2
ε

2
− cos2 θ

2

)√
s2 + sin2

ε

2

.

Therefore, the flux takes the form

f (θ ) = −1

2
+ 1√

2π

d

dθ


 cos

θ

2√− cos θ − cos ε

×


πa0 −

∫ cos(ε/2)

0

4 arccos

√
s2 + sin2

ε

2
s2 ds(

s2 + sin2
ε

2
− cos2 θ

2

)√
sin2

ε

2
+ s2




 ,

which is rewritten as

f (θ ) = −1

2
+ 1

2π

d

dθ


cos

θ

2
b

(
πa0 − 4

∫ √
1−a2

0

arccos
√

s2 + a2 s2 ds√
a2 + s2

(
s2 + b2

)
) ,

(C.1)

where a = sin ε
2 and 2b2 = − cos θ − cos ε. Writing

φ(a, s) = arccos
√

s2 + a2

√
s2 + a2

=
∞∑

n=0

φ2n(a) s2n,

we find the Taylor coefficients

φ0(a) = arccos a

a
, φ2(a) = −

(
arccos a

2a3
+ 1

2a2
√

1 − a2

)
,

and so on. For all n ≥ 0 we find the asymptotic behavior

φ2n(a) ∼ c2n

a2n+1
+ O

(
1

a2n

)
as a → 0.
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To see this, consider the Taylor expansions

(√
1 +

( s

a

)2
)2n+1

=
∞∑

m=0

cm
n

s2m

a2m

arccos

(
a

√
1 +

( s

a

)2
)

= π

2
+

∞∑
n=0

αna2n+1

(√
1 +

( s

a

)2
)2n+1

= π

2
+

∞∑
n=0

αna2n+1
∞∑

m=0

cm
n

s2m

a2m

= π

2
+

∞∑
m=0

s2m

a2m

∞∑
n=0

cm
n αna2n+1,

where αn and cm
n are (known) constants, and

1

a

√
1 +

( s

a

)2
= 1

a

∞∑
n=0

(−1)n (2n)!

(2nn!)2

s2n

a2n
. (C.2)

Therefore

φ(a, s) = 1

a

∞∑
n=0

(−1)n (2n)!

(2nn!)2

s2n

a2n

(
π

2
+

∞∑
m=0

s2m

a2m

∞∑
n=0

cm
n αna2n+1

)
, (C.3)

from which it follows that

φ(a, s) =
∞∑

n=0

(
(−1)n π

2

(2n)!

(2nn!)2
+ O(a)

)
s2n

a2n+1
. (C.4)

This shows that

φ2n(a) ∼ (−1)n π

2

(2n)!

(2nn!)2a2n+1
+ O

(
a−2n

)
, (C.5)

as asserted. The asymptotic behavior (C.5) of the coefficients φ2n(a) can be used
to estimate the integral in Eq. (C.1),

∫ √
1−a2

0

φ(a, s) s2 ds

s2 + b2
=

∞∑
n=0

φ2n(a)
∫ √

1−a2

0

s2n+2 ds

s2 + b2
. (C.6)
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To extract the asymptotic behavior of the integral as b → 0, we use the long
division

s2n+2

s2 + b2
=

n∑
j=0

(−1) j b2 j s2n−2 j + (−1)n+1b2n+2

s2 + b2
(C.7)

and integrate it to yield∫ √
1−a2

0

s2n+2

s2 + b2
ds (C.8)

=
n∑

j=0

[
(−1) j b2 j

∫ √
1−a2

0
s2n−2 j ds

]
+ (−1)n+1b2n+2

∫ √
1−a2

0

ds

s2 + b2

=
n∑

j=0

[
(−1) j b2 j (

√
1 − a2)2n−2 j+1

2n − 2 j + 1

]
+ (−1)n+1b2n+1 arctan

√
1 − a2

b
.

The Taylor expansion

arctan

√
1 − a2

b
= π

2
+

∞∑
m=0

(−1)m+1

2m + 1

b2m+1

(
√

1 − a2)2m+1
(C.9)

gives the Taylor expansion of the integral (C.8) in powers of b as∫ √
1−a2

0

s2n+2

s2 + b2
ds =

n∑
j=0

(−1) j b2 j (
√

1 − a2)2n−2 j+1

2n − 2 j + 1

+ (−1)n+1b2n+1

(
π

2
+

∞∑
m=0

(−1)m+1

2m + 1

b2m+1

(
√

1 − a2)2m+1

)

=
n∑

j=0

(−1) j (
√

1 − a2)2n−2 j+1

2n − 2 j + 1
b2 j

+ (−1)n+1 π

2
b2n+1 +

∞∑
m=0

(−1)n+m

(2m + 1)(
√

1 − a2)2m+1
b2m+2n+2.

Therefore, the Taylor expansion of the integral (C.6) is∫ √
1−a2

0

φ(a, s) s2 ds

s2 + b2
=

∞∑
n=0

φ2n(a)

[ n∑
j=0

(−1) j (
√

1 − a2)2n−2 j+1

2n − 2 j + 1
b2 j

+ (−1)n+1 π

2
b2n+1 +

∞∑
m=0

(−1)n+m

(2m + 1)(
√

1 − a2)2m+1
b2m+2n+2

]
.
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Rearranging in powers of b, we find that

∫ √
1−a2

0

φ(a, s) s2 ds

s2 + b2
=

∞∑
n=0

βn(a) bn, (C.10)

where the first three coefficients are

β0(a) =
∞∑

n=0

φ2n(a)
(
√

1 − a2)2n+1

2n + 1
=
∫ √

1−a2

0
φ(a, s) ds = π

4
a0,

β1(a) = −πφ0(a)

2
= −π arccos a

2a
,

β2(a) = −
∞∑

n=1

φ2n(a)
(
√

1 − a2)2n−1

2n − 1
+ φ0(a)√

1 − a2

= −
∫ √

1−a2

0

φ(a, s) − φ0(a)

s2
ds + φ0(a)√

1 − a2

and all other coefficients βn are recovered in a similar fashion,

β2 j+1 = (−1) j+1 π

2
φ2 j (a) = −π2

4

(2 j)!

(2 j j!)2a2 j+1
+ O(a−2 j ),

β2 j = (−1) j


 ∞∑

n= j

φ2n(a)
(
√

1 − a2)2n−2 j+1

2n − 2 j + 1

−
j−1∑
n=0

φ2n(a)
1

(2 j − 2n − 1)(
√

1 − a2)2 j−2n−1

)

= (−1) j


∫ √

1−a2

0

1

s2 j

∞∑
n= j

φ2n(a)s2n ds

−
j−1∑
n=0

φ2n(a)
1

(2 j − 2n − 1)(
√

1 − a2)2 j−2n−1

)

= (−1) j

(∫ √
1−a2

0

φ(a, s) −∑ j−1
n=0 φ2n(a)s2n

s2 j
ds

−
j−1∑
n=0

φ2n(a)
1

(2 j − 2n − 1)(
√

1 − a2)2 j−2n−1

)
.
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We see that extra effort should be put in finding the even coefficients β2n . Expand-
ing

φ(a, s) = π

2

1√
s2 + a2

−
∞∑

n=0

(2n)!

(2nn!)2

(s2 + a2)n

2n + 1
, (C.11)

and noting that the following infinite sum has a regular contribution

lim
a→0

∫ √
1−a2

0

1

s2 j

∞∑
n= j

(2n)!

(2nn!)2

(s2 + a2)n

2n + 1
ds = C j , (C.12)

where C j are constants (also can be written in term of hypergeometric functions),
we find an alternative representation for the even coefficients,

β2 j = (−1) j

(∫ √
1−a2

0

φ(a, s) −∑ j−1
n=0 φ2n(a)s2n

s2 j
ds

−
j−1∑
n=0

φ2n(a)

(2 j − 2n − 1)(
√

1 − a2)2 j−2n−1

)

= (−1) j

(
−C j + O(a)

+
∫ √

1−a2

0

π

2

1√
s2 + a2

−
j−1∑
n=0

(2n)!

(2nn!)2

(s2 + a2)n

2n + 1
−

j−1∑
n=0

φ2n(a)s2n

s2 j
ds

−
j−1∑
n=0

φ2n(a)
1

(2 j − 2n − 1)(
√

1 − a2)2 j−2n−1

)

= (−1) j

(∫ √
1−a2

0

π

2

1√
s2 + a2

−
j−1∑
n=0

(2n)!

(2nn!)2

(s2 + a2)n

2n + 1
−

j−1∑
n=0

φ2n(a)s2n

s2 j
ds

−(−1) j−1 π

2

(2 j − 2)!

(2 j−1( j − 1)!)2

1

a2 j−1
+ O

(
1

a2 j−2

))
.

The integrals are given in Ref. 23,

∫
ds

s2 j
√

s2 + a2
= 1

a2 j

j−1∑
n=0

(−1)n

2n − 2 j + 1

(
j − 1

n

)(
s2

s2 + a2

)n− j+1/2

. (C.13)
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The binomial expansion gives

∫
(s2 + a2)n ds

s2 j
=

n∑
k=0

1

2k − 2 j + 1

(
n

k

)
s2k−2 j+1a2n−2k . (C.14)

Altogether, we find that the integral term in Eq. (C.13) is

∫ √
1−a2

0

π

2

1√
s2 + a2

−
j−1∑
n=0

(2n)!

(2nn!)2

(s2 + a2)n

2n + 1
−

j−1∑
n=0

φ2n(a)s2n

s2 j
ds

= π

2

1

a2 j

j−1∑
n=0

(−1)n

2n − 2 j + 1

(
j − 1

n

)
+ O

(
1

a2 j−1

)
.

This sum has the closed form(23)

k∑
i=0

(−1)i

2i + 1

(
k

i

)
= (2kk!)2

(2k + 1)!
, (C.15)

and we have obtained the asymptotic form of the even coefficients

β2 j = π

2

1

a2 j

(2 j−1( j − 1)!)2

(2 j − 1)!
+ O

(
1

a2 j−1

)
. (C.16)

We are now able to find the asymptotic expansion of the flux profile (C.1),

f (θ ) = −1

2
+ 1

2π

d

dθ


cos

θ

2
b

(
πa0 − 4

∫ √
1−a2

0

arccos
√

s2 + a2 s2 ds√
a2 + s2

(
s2 + b2

)
)

= −1

2
− 2

π

d

dθ

[
cos

θ

2

∞∑
n=0

βn+1bn

]
.

Setting εα = π − θ , we obtain after some manipulations that to lead-
ing order in small ε the flux is given in the interval −1 < α < 1
by

f (α) = − α2

ε
√

1 − α2
− 1

ε

∞∑
n=0

[(
2n+1(n + 1)!

)2

(2n + 2)!
α2 − (2nn!)2

(2n + 1)!

]
(1 − α2)n+1/2

− π

2ε

∞∑
n=0

[
(2n)!

(2nn!)2
− (2n + 2)!(2n + 2)

(2n+1(n + 1)!)2
α2

]
(1 − α2)n + O(1). (C.17)
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